The dipeptide H-Trp-Arg-OH (WR) Is a PPARα agonist and reduces hepatic lipid accumulation in lipid-loaded H4IIE cells.

نویسندگان

  • Yaoyao Jia
  • Jong-Ho Kim
  • Bora Nam
  • Jiyoung Kim
  • Ji Hae Lee
  • Kyung Ok Kim
  • Kwang Yeon Hwang
  • Sung-Joon Lee
چکیده

Dipeptides absorbed by the intestinal epithelium are delivered to circulation, but their metabolic roles are not yet clearly understood. We investigated the biological activities of a dietary dipeptide, H-Trp-Arg-OH (WR), on the regulation of peroxisome proliferator-activated receptor (PPAR) α activity. Reporter gene assays revealed that WR dose-dependently induced PPARα transactivation. Surface plasmon resonance experiments demonstrated that WR interacts directly with the PPARα ligand binding domain, and time-resolved fluorescence energy transfer analyses revealed recruitment of a co-activator peptide, fluorescein-PGC1α, to PPARα, confirming the direct binding of WR to PPARα and occurrence of conformational changes. WR induced cellular fatty acid uptake and the expression of PPARα response genes in fatty acid oxidation, thus reducing intracellular triglyceride accumulation in lipid-loaded hepatocytes. In conclusion, the dietary dipeptide WR activates PPARα and reduces hepatic lipid accumulation in lipid-loaded hepatocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resveratrol reduces lipid accumulation through upregulating the expression of microRNAs regulating fatty acid bet oxidation in liver cells: Evidence from in vivo and in vitro studies

MicroRNAs has been shown to regulate lipogenesis in liver. The aim of the present study was to investigate whether the effects of resveratrol (RSV) on lipogenesis is associated with the changes in the expression of two miRNAs (miR-107 and miR-10b) that regulate lipogenic pathways. 30 wild type C57BL/6j male mice were randomly fed three diets: a standard chow diet (ND), a high fat diet (HFD, 60%...

متن کامل

Resveratrol reduces lipid accumulation through upregulating the expression of microRNAs regulating fatty acid bet oxidation in liver cells: Evidence from in vivo and in vitro studies

MicroRNAs has been shown to regulate lipogenesis in liver. The aim of the present study was to investigate whether the effects of resveratrol (RSV) on lipogenesis is associated with the changes in the expression of two miRNAs (miR-107 and miR-10b) that regulate lipogenic pathways. 30 wild type C57BL/6j male mice were randomly fed three diets: a standard chow diet (ND), a high fat diet (HFD, 60%...

متن کامل

The natural carotenoid astaxanthin, a PPAR-α agonist and PPAR-γ antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid-loaded hepatocytes.

SCOPE A natural carotenoid abundant in seafood, astaxanthin (AX), has hypolipidemic activity, but its underlying mechanisms of action and protein targets are unknown. We investigated the molecular mechanism of action of AX in hepatic hyperlipidemia by measuring peroxisome proliferator-activated receptors (PPAR) activity. METHODS AND RESULTS We examined the binding of AX to PPAR subtypes and i...

متن کامل

PPARα Is Required for PPARδ Action in Regulation of Body Weight and Hepatic Steatosis in Mice

Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expr...

متن کامل

PPARα-independent actions of omega-3 PUFAs contribute to their beneficial effects on adiposity and glucose homeostasis

Excess dietary lipid generally leads to fat deposition and impaired glucose homeostasis, but consumption of fish oil (FO) alleviates many of these detrimental effects. The beneficial effects of FO are thought to be mediated largely via activation of the nuclear receptor peroxisomal-proliferator-activated receptor α (PPARα) by omega-3 polyunsaturated fatty acids and the resulting upregulation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied biochemistry and biotechnology

دوره 175 2  شماره 

صفحات  -

تاریخ انتشار 2015